Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NanoImpact ; 27: 100417, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35995389

RESUMO

Nanotechnology has shown great potential to increase global food production and enhance food security. However, large-scale application of nano-enabled plant agriculture necessitates careful adjustments in design to overcome barriers associated with targeted nanomaterial delivery and their safety concerns. The research herein proposes the delivery of copper (Cu) from immobilized and non-immobilized copper oxide nanoparticles (Cu2O), an active nanomaterial with antifungal and micro-nutrient properties. A benign and biodegradable jellyfish-based hydrogel was used as a platform during Cu2O delivery to soils. The delivery kinetics and Cu dissolution from the nanocomposite were compared to those obtained with crosslinked ionic Cu in hydrogel, which was found to be a less controlled composite. In addition, changing environmental conditions from DI to soil extracts resulted in a decrease in the Cu dissolution rate (from 0.025 to 0.015 h-1) and an increase in the overall normalized Cu release (0.27 to 0.76 mg g-1). Use of hydrogels from natural sources allowed biodegradability over several months, adding nutrients (in the form of elements such as sulfur, nitrogen, and carbon) back to the environment, which ultimately minimizes nanomaterial required for a given desired nanomaterial yield and enhances the overall performance. Altogether, this work demonstrates the potential of Cu2O embedded hydrogels as a benign composite for Cu slow-release and therefore bolsters the field of nano-enabled plant agriculture and supports its safe deployment at large scales.


Assuntos
Poluentes do Solo , Solo , Agricultura/métodos , Cobre , Hidrogéis , Plantas , Poluentes do Solo/análise
2.
J Hazard Mater ; 432: 128661, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35305415

RESUMO

The growing in manufacturing and applications of graphene oxide (GO), a two-dimensional nanomaterial, highlights the need for a better understanding of its environmental impact and toxicity. This work investigates the interaction of GO with cell membrane models as an indication for GO's potential harmfulness. A wide range of biologically-relevant membrane parameters (size, charge and, cholesterol content) and simple optical techniques were used to evaluate the outcome of interactions of vesicular cell membrane models with GO. Loss of membrane integrity was found to be positively correlated with electrostatic attraction and negatively correlated with cholesterol content. The size of vesicle-GO aggregates increased as a function of initial vesicle size, while cholesterol content was found to have a negligible effect on aggregation. Interestingly, charged vesicles reduced vesicle-GO aggregate size either by electrostatic repulsion of negatively charge vesicles or by GO folding following attachment of positively charge vesicles. Overall, by examining how key biologically-relevant parameters of membrane models affect interactions with GO, we have augmented the understanding of the potential threats of GO towards biological cell and to the environment.


Assuntos
Grafite , Nanoestruturas , Membrana Celular , Colesterol , Grafite/toxicidade
3.
Environ Chem Lett ; 19(2): 1779-1785, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33462542

RESUMO

The COVID-19 pandemic has severely impacted public health worldwide. Evidence of SARS-CoV-2 transmission via aerosols and surfaces has highlighted the need for efficient indoor disinfection methods. For instance, the use of ozone gas as a safe and potent disinfectant against SARS-CoV-2 virus is of particular interest. Here we tested the use of pseudoviruses as a model for evaluating ozone disinfection of the coronavirus at ozone concentrations of 30, 100, and 1000 ppmv. Results show that ozone disinfection rate of pseudoviruses was similar to that of coronavirus 229E (HuCoV-229E) at short contact times, below 30 min. Viral infection decreased by 95% following ozone exposure for 20 min at 1000 ppmv, 30 min at 100 ppmv and about 40 min at 30 ppmv. This findings mean that ozone is a powerful disinfectant toward the enveloped pseudovirus even at low ozone exposure. We also showed that viral disinfection occurs on various contaminated surfaces, with a positive association between disinfection and surface hydrophilicity. Infected surfaces made of aluminum alloy, for example, were better disinfected with ozone as compared to brass, copper, and nickel surfaces. Lastly, we demonstrate the advantage of ozone over liquid disinfectants by showing similar viral disinfection on top, side, bottom, and interior surfaces. Overall, our study demonstrates the potential use of ozone gas disinfection to combat the COVID-19 outbreak.

4.
Environ Sci Technol ; 53(22): 13071-13080, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31618570

RESUMO

The understanding of engineered nanoparticle (ENP) fate and transport in soil-water environments is important for the evaluation of potential risks of ENPs to the ecosystem and human health. The effects of pyrite grains and three types of oxyanions-sulfate, phosphate, and arsenate-on the retention of citrate-coated gold nanoparticles (citrate-Au-NPs) were studied in partially saturated soil column experiments. The mobility of Au-NP was found to be in the order: Au-NP-sulfide (originating from pyrite) > Au-NP-sulfate > citrate-Au-NP > Au-NP-arsenate > Au-NP-phosphate. Chemical retention mechanisms, including hydrogen bonding and calcium bridging, are proposed and discussed. The retention of Au-NPs in soil columns increases with the increased ability of transformed Au-NP surfaces to create strong hydrogen bonding through adsorbed oxyanions with soil surfaces. Oxyanions were also found to reduce aggregation and aggregate size of Au-NPs upon interaction with Ca2+ solution. While the effects of cationic substances on ENP transport and stability have been studied frequently, the results here demonstrate that anionic substances have a substantial effect on Au-NP transport and stability. Furthermore, this study highlights the importance of examining ENPs under environmentally relevant condition, and the significant effect of ENP transformations on their mobility in soils.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Arseniatos , Ecossistema , Ouro , Humanos , Ferro , Fosfatos , Solo , Sulfatos , Sulfetos
5.
J Hazard Mater ; 363: 394-400, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30321844

RESUMO

Transport of indium and gallium is reported in laboratory column experiments using quartz sand as a model porous medium representative of a groundwater system. With increased use of indium and gallium in recent years, mainly in the semiconductor industry, concerns arise regarding their environmental effects. The transport and retention behavior of these two metals were quantified via batch and column experiments, and numerical modeling. The effect of natural organic matter on indium and gallium mobility was studied by addition of humic acid (HA). Measured breakthrough curves from column experiments demonstrated different binding capacities between indium and gallium, stronger for indium, with the presence of HA affecting retention dynamics. For indium, the binding capacity on quartz decreases significantly in the presence of HA, leading to enhanced mobility. In contrast, gallium exhibits slightly higher retention and lower mobility in the presence of HA. In all cases, the binding capacity of gallium to quartz is much weaker than that of indium. These results are consistent with the assumption that indium and gallium form different types of complexes with organic ligands, with gallium complexes appearing more stable than indium complexes. Quantitative modeling confirmed that metal retention is controlled by complex stability.

6.
J Hazard Mater ; 311: 254-62, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-26995325

RESUMO

The vadose zone is a critical region controlling fate and transport of contaminants in soils and, ultimately, groundwater. It is therefore important to understand the behavior of engineered nanoparticles (ENPs) in this zone, as a potential group of emerging contaminants. Soil is a significant sink for ENPs; however, only a few studies have considered the fate and transport of ENPs in partially saturated systems, representative of the vadose zone. Here, transport behavior of three commonly used ENPs--gold (Au-NPs), silver (Ag-NPs) and zinc oxide (ZnO-NPs)--is investigated in partially saturated sand columns. High mobilities of Au-NPs and Ag-NPs under different water saturation levels and concentrations were observed. The presence of CaCl2 reduces Ag-NP mobility through chemical interactions, similar to behavior reported in saturated systems. Furthermore, transformation of Ag-NPs in the environment may influence their mobility; aging of Ag-NPs following sulfidation was investigated. The silver sulfide (Ag2S-NPs) remained stable in aqueous suspension, and mobile in the partially saturated sand column. In contrast, the positively-charged ZnO-NPs were completely immobilized in the sand column. Significantly, though, addition of humic acid (HA) to the ZnO-NP suspension reverses particle surface charge and thus increases their mobility. Moreover, remobilization of entrapped ZnO-NPs by HA was demonstrated.

7.
Environ Sci Technol ; 49(7): 4433-40, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25723316

RESUMO

Many of polybrominated organic compounds, used as flame retardant additives, belong to the group of persistent organic pollutants. Compound-specific isotope analysis is one of the potential analytical tools for investigating their fate in the environment. However, the isotope effects associated with transformations of brominated organic compounds are still poorly explored. In the present study, we investigated carbon and bromine isotope fractionation during degradation of tribromoneopentyl alcohol (TBNPA), one of the widely used flame retardant additives, in three different chemical processes: transformation in aqueous alkaline solution (pH 8); reductive dehalogenation by zero-valent iron nanoparticles (nZVI) in anoxic conditions; oxidative degradation by H2O2 in the presence of CuO nanoparticles (nCuO). Two-dimensional carbon-bromine isotope plots (δ(13)C/Δ(81)Br) for each reaction gave different process-dependent isotope slopes (Λ(C/Br)): 25.2 ± 2.5 for alkaline hydrolysis (pH 8); 3.8 ± 0.5 for debromination in the presence of nZVI in anoxic conditions; ∞ in the case of catalytic oxidation by H2O2 with nCuO. The obtained isotope effects for both elements were generally in agreement with the values expected for the suggested reaction mechanisms. The results of the present study support further applications of dual carbon-bromine isotope analysis as a tool for identification of reaction pathway during transformations of brominated organic compounds in the environment.


Assuntos
Fracionamento Químico/métodos , Propanóis/química , Bromo/química , Isótopos de Carbono/química , Catálise , Cobre/química , Retardadores de Chama/análise , Halogenação , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Hidrólise , Ferro/química , Isótopos/análise , Nanopartículas/química , Oxirredução , Propanóis/análise
8.
Chemosphere ; 93(1): 172-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23786809

RESUMO

The catalytic degradation of two brominated flame retardants (BFRs), tribromoneopentyl alcohol (TBNPA) and 2,4 dibromophenol (2,4-DBP) by copper oxide nanoparticles (nCuO) was investigated. The degradation kinetics, the debromination, and the formation of intermediates by nCuO catalysis were also compared to Fenton oxidation and nano zero-valent iron (nZVI) reduction methods. BFRs have been added to various products like plastic, textile, electronics and synthetic polymers at growing rates. In spite of the clear advantages of reducing fire damages, many of these BFRs may be released to the environment after their beneficial use and become contaminants. The two studied BFRs were fully degraded with sufficient time (hours to days) and oxidation agent (H2O2). Shorter reaction times showed differences in reaction pathway and kinetics. The 2,4-DBP showed faster degradation than TBNPA, by nCuO catalysis. Relatively high resistance to degradation was recorded for 2,4-DBP with nZVI, yielding 20% degradation after 24h, while the TBNPA was degraded by 85% within 12h. Electron Spin Resonance (ESR) measurements show generation of both hydroxyl and superoxide radicals. In addition, inhibition of 2,4-DBP degradation in the presence of spin traps implies a radical degradation mechanism. A catalytic mechanism for radical generation and BFR degradation by nCuO is proposed. It is further suggested that H2O2 plays an essential role in the activation of the catalyst.


Assuntos
Cobre/química , Poluentes Ambientais/química , Retardadores de Chama , Nanopartículas/química , Fenóis/química , Propanóis/química , Catálise , Cinética , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...